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ABSTRACT 

The stable difference scheme for the approximate solution of the initial value problem 

( )
( ) ( ) ( )

1

2 ,t

du t
D u t Au t f t

dt
+ + = ( )0 1, 0 0t u< < =  for the differential equation in a 

Banach space E  with the strongly positive operator A  and fractional operator 

1

2
tD  

is presented. The well-posedness of the difference scheme in difference analogues of 

spaces of smooth functions is established. In practice, the coercive stability estimates 
for the solution of difference schemes for the 2m-th order multi-dimensional 
fractional parabolic equation and the one-dimensional fractional parabolic equation 
with nonlocal boundary conditions in space variable are obtained. 
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1. INTRODUCTION 

It is known that differential equations involving derivatives of non 

integer order have shown to be adequate models for various physical 
phenomena in areas like rheology, damping laws, diffusion processes, etc. (see 

the references given therein). A review of some applications of fractional 

calculus in continuum and statistical mechanics is given by Mainardi (1997). 
 

The role played by coercive stability inequalities (well-posedness) in 

the study of boundary-value problems for parabolic partial differential and 

difference equations is well known (see Ashyralyev and Sobolevskii (1994, 
2004)). In Ashyralyev (2010), the initial value problem 

 
1

2
( )

( ) ( ) ( ), 0 1, (0) 0t

du t
D u t Au t f t t u

dt
+ + = < < =                 (1) 
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for the fractional differential equation in a Banach space E  with the 

strongly positive operator A  is considered. Here 

1 1

2 2
0tD D +=  is the standard 

Riemann-Lioville's derivative of order 
1

2
. This fractional differential equation 

corresponds to the Basset problem (Basset (1910)). It represents a classical 
problem in fluid dynamics where the unsteady motion of a particle accelerates 

in a viscous fluid due to the gravity of force. 
 

A function ( )u t  is called a solution of the problem (1) if the 

following conditions are satisfied: 
 

(i) ( )u t is continuously differentiable on the segment [0,1], 

(ii) The element ( )u t  belongs to ( )D A  for all  [0,1]t ∈  and the function 

( )Au t is continuous on the segment [0,1], 

(iii) ( )u t satisfies the equation and the initial condition (1). 

 

A solution of problem (1) defined in this manner will from now on 

referred to as a solution of problem (1) in the space ( ) ([0,1], )C E C E=  of all 

continuous functions ( )tϕ  defined on [0,1] with values in E  equipped with 

the norm 

( ) 0 1
max ( ) .

C E Et
tϕ ϕ

≤ ≤
=  

 

The well-posedness in ( )C E  of the boundary value problem (1) means that 

coercive inequality 

 
1

2

( ) ( ) ( )
( )

tC E C E C E
C E

u D u Au M f′ + + ≤  

 

is true for its solution ( ) ( )u t C E∈  with some ,M which does not depend on 

( ) ( ).f t C E∈   

 

Positive constants, which can differ in time (hence: not a subject of 

precision) will be indicated with an .M  On the other hand ( , , )M α β ⋯  is 

used to focus on the fact that the constant depends only on , , .α β ⋯   

In Ashyralyev (2010), the following theorems on well-posedness of (1) in spaces 

of smooth functions was established. 
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Theorem 1. Let A  be a strongly positive operator in a Banach space E and 

( ) ( ).f t C E∈  Then, for the solution ( )u t  in ( )C E  of the initial value problem 

(1) the stability inequality holds: 

 
1

2

( ) ( )
( )

.t C E C E
C E

D u u Au M f′+ + ≤                               (2) 

 

Theorem 2. Let A  be a strongly positive operator in a Banach space E  and 

( ) ( )(0 1).f t C Eα α∈ < <  Then for the solution ( )u t in ( )C Eα  of the initial 

value problem (1) the coercive inequality is valid: 

 
1 1

( ) ( ) ( )
(1 ) .

C E C E C E
u Au M f

α α α
α α− −′ + ≤ −                         (3) 

 

Here, the fractional space ( , )(0 1),E E E Aα α α= < < consisting of all Eυ ∈  

for which the following norm is finite: 
 

1

0

sup exp( )
E E

A A
α

αυ υ−

>

= −
⋋

⋋ ⋋  

is additionally introduced. 
 

In the present paper, the stable difference scheme for the approximate 

solution of initial value problem (1) 
 

1

1 2
1

0

( ) ,

( ), , 1 , 1, 0

k k k k k

k k k

u u Au D u f

f f t t k k N N u

ττ

τ τ

−
−


 − + + =
 − = ≤ ≤ = =

                    (4) 

 

is presented. Here, 

 

1

2

11 1
1122 2
2

1 0

( )1
, ( ) .

( )!

k
k m

tm m
k

m

k m u u
D u k m t e dt

k m
τ

π τ

∞
− −

−−

=

Γ − + −
= Γ − + =

−
∑ ∫       (5) 

 

The paper is organized as follows. The well-posedness of (4) in difference 

analogues of spaces of smooth functions is established in Section 2. In 
Section 3 the coercive stability estimates for the solution of difference schemes 

for the 2m-th order multi-dimensional fractional parabolic equation and the 

one-dimensional fractional parabolic equation with nonlocal boundary 
conditions in space variable are obtained. 



Allaberen Ashyralyev 

 

76 Malaysian Journal of Mathematical Sciences 
 

2. THE WELL-POSEDNESS OF DIFFERENCE SCHEME 

Let us first obtain the representation for the solution of problem (4). 

It is clear that the first order of accuracy difference scheme 

 
1

1 0( ) , 1 1, 0k k k ku u Au F k N uτ τ−
−− + = ≤ ≤ = =  

 

has a solution and the following formula holds: 

 

1

1

, 1 ,
k

k s
k s

s

u R F k Nτ− +

=

= ≤ ≤∑  

 

where 1( ) .R I Aτ −= +  Applying the formula 
1

2 ,k k kF f D uτ= − we get 

 
1

21 1

1 1

, 1 .
k k

k s k s
k s s

s s

u R D u R f k Nτ τ τ− + − +

= =

= − + ≤ ≤∑ ∑                    (6) 

 
So, formula (6) gives the representation for the solution of problem (4). Let 

( )F Eτ  be the linear space of mesh functions 1{ }N
k

τϕ ϕ=  with values in the 

Banach space .E  Next on ( )F Eτ  we introduce the Banach space 

( ) ([0,1] , )C E C Eτ τ=  with the norm 

 

( ) 1
max .k EC E k N

τ

τ

ϕ ϕ
≤ ≤

=  

 

Theorem 3. Let A  be a strongly positive operator in a Banach space .E  

Then, for the solution 1{ }N
ku uτ =  in ( )C Eτ  of initial value problem (4) the 

stability inequality holds: 

 

{ }
1

12
1

1
1

( )( )
( )

( ) .

N

N

k k k k C EC E
C E

D u u u Au M f τ
τ

ττ
τ

τ −
−

  
− + ≤ 

  
+        (7) 

 

Proof. Using formula (6), we get 

 
1 1

2 21 1 1
1

1 1

( ) .
k k

k s k s
k k k s k s

s s

u u D u AR D u f AR fτ ττ τ τ− − + − +
−

= =

− = + + −∑ ∑           (8) 
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Applying formulas (8) and (5), we obtain 

 

1 1 1

2 2 2

1

2

1

( )1

( )!

k

k m m

m

k m
D u D u f

k m
τ ττ

π =

Γ − +  = − + −  
∑  

1 3

2 2

1

12

1

( )1

( )!

k k
m s

s

s m s

k m
AR D u

k m
τ τ

π

− +

= =

Γ − +
+

−
∑∑  

3

2

1

12

1

( )1
.

( )!

k k
m s

s

s m s

k m
AR f

k m
τ

π

− +

= =

Γ − +
−

−
∑∑  

 

Let us first obtain the estimate 

 

1

2

1

12
( )1

( )! ( )

k
m s

m s

k m M
AR

k m k s
E E

τ
π τ

− +

=

Γ − +
≤

− −
→

∑                   (9) 

 

for any 1 .s k N≤ < ≤  We have that 

 

1 1

2 2

1 1

1 12 2

2

( ) ( )1 1

( )! ( )!

k k
m s m s

s km s
m

k m k m
AR AR

k m k m
τ τ

π π

− + − +

+=  
=  

Γ − + Γ − +
=

− −
∑ ∑  

1

2

1
12

12
1 2

( )1
.

( )!

s k

m s

m s

k m
AR J J

k m
τ

π

+ 
−  

− +

=

Γ − +
= +

−
∑  

 
Using estimates Sobolevskii (1971) 

 

 

, , 1k k

E E E E

M
AR R M k N

kτ→ →
≤ ≤ ≤ ≤                        (10) 

 
 

and the following elementary inequality 

 
1

2
( ) 1

, 0 ,
( )!

k m
m k

k m k m

Γ − +
≤ ≤ <

− −
                              (11) 
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we get 

1

2

1

12
1

2

( )1

( )!

k
m s

s k
m

E E E E

k m
J AR

k m
τ

π

− +

+ 
=  

→ →

Γ − +
≤

−
∑                      (12) 

 

1

2

2 1
.

( ) ( ) ( )

k

s k
m

MM

k s k m k s

τ

τ π τ τ+ 
=  

≤ ≤
− − −

∑  

 

Now, we shall estimate 2.J  We have that 

 

1 1

2 2 2

1 3
[ ]2 2 2

2

2

( ) ( [ ] )1 1

( )! ( [ ] 1)!

s k
s k

s

s k

k s k
J R

k s k
τ τ

π π

+
+

− −−

+

Γ − + Γ − +
= −

− − +
 

2 1

2

1 1 3

2 2

1

( ) ( )1
.

( )! ( 1)!

s k

m s

m s

k m k m
R

k m k m
τ

π

+ 
 
 

−
−−

= +

 Γ − + Γ − +
+ − 

− − +  
∑  

 

Applying estimates (10) and (11), we obtain 
 

2
[ ]

2

2

1 1 1 1

( ) ( [ ] 1)

s k
s

s kE E
E E

J R
k s kπ τ π τ

+
−

+→
→

≤ +
− − +

    (13) 

 

2 1

2

1 1 3

2 2

1

( ) ( )1

( )! ( 1)!

s k

m s

m s
E E

k m k m
R

k m k m
τ

π

+ 
 
 

−
−−

= +
→

Γ − + Γ − +
+ −

− − +
∑  

 

1 1 1 2

( ) ( )
M

k s k sπ τ π τ
≤ +

− −
 

 

2
11

22

1

.
( 1) ( ) ( )

s k

m s

M
M

k m k m k s

τ

π τ τ τ

+ 
 
 

−

= +

+ ≤
− + − −

∑  

 

Estimate (9) follows from estimates (12) and (13). 
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Now, let us first estimate 
1

2 .k k
E

z D uτ=  Applying the triangle 

inequality and estimate (9), we get 

 

1

2

1

2

1

( )1

( )!

k

k m m

m
E

k m
z z f

k m
τ

π

−

=

Γ − +
 ≤ + −

∑  

 

3

2

1

12

1

( )1

( )!

k k
m s

s

s m s E E

k m
AR z

k m
τ

π

− +

= = →

Γ − +
+

−
∑ ∑  

 

3

2

1

12

1

( )1

( )!

k k
m s

s

s m s
E

E E

k m
AR f

k m
τ

π

− +

= = →

Γ − +
+

−
∑ ∑  

 

1

2

1

3 4

1

1

( )

k

s s k k

s
E E

M z f M z f
k s

τ τ
τ

−

=

   ≤ + + +   −
∑  

 

 

for any 1, , .k N= ⋯  Applying the above inequality and the difference 

analogue of the integral inequality, we obtain 

 

{ }
1

2

1
( )

( )

.
N

k C E
C E

D u M f
τ

τ

τ
τ ≤                                (14) 

 

Using the triangle inequality and equation (4), we get 
 

{ } { }
1

21

1
1

1
( )( ) ( )

( )
N

N

k k k kC EC E C E

u u Au f D u
τ

τ
τ

τ
ττ −

−

 
 − + ≤ +
 
 

 

 

1 ( )
.

C E
M f

τ

τ≤                              (15) 

 
Estimate (7) follows from estimates (14) and (15). Theorem 3 is proved.  
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Theorem 4. Let A  be a strongly positive operator in a Banach space .E  

Then, for the solution { }
1

N

ku u
τ =  in ( )C Eτ  of initial value problem (4) the 

almost coercive stability inequality is valid: 

 

{ } { }1
1 11 ( )( )

( )
N N

k k k
C EC E

u u Au
ττ

τ −
−− +                       (16) 

( )

1
min ln ,1 ln .

E E C E
M A f

τ

τ

τ →
 

≤ + 
 

 

 

Proof. The proof of estimate 

 

{ }1
1

1 ( )( )

1
( ) min ln ,1 ln

N

k k E E C EC E
u u M A f

τ
τ

ττ
τ

−
− →

 
− ≤ + 

 
     (17) 

 

or the solution of initial value problem (4) is based on estimate (7) and the 
following estimates (Ashyralyev and Sobolevskii (1994)): 

 

1

1
1

( )

1
max min ln ,1 ln ,

k
k s

s
k N

s
E E C E

E

AR f M A f ττ
τ

− +

≤ ≤
=

→
 

≤ + 
 

∑  

 

{ }
1 1

2 21

1 11 ( )

1
max min ln ,1 ln .

Nk
k s

s k
k N

s
E E

E C E

AR D u M A D uτ ττ
τ

− +

≤ ≤
=

→
 

≤ + 
 

∑  

 

Using these estimates, the triangle inequality and equation (4), we get 

 

{ }
1 ( )( )

1
min ln ,1 ln .

N

k E E C EC E
Au M A f

τ

τ

τ →
 

≤ + 
 

           (18) 

 

Estimate (16) follows from estimates (17) and (18). Theorem 4 is proved. 

 

Note that the Banach space ( , )(0 1)E E E Aα α α′ ′= < <  consists of those 

Eυ ∈  for which the norm 

 
1

0

sup ( )
E E

A A
α

αυ υ−

>
′

= +
⋋

⋋ ⋋  

is finite. 
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Theorem 5. Let A  be a strongly positive operator in a Banach space .E  

Then, for the solution { }
1

N

ku u
τ =  in ( )C Eτ α′  of the initial value problem (4) 

the coercive stability inequality is valid: 
 

{ } { }1
1 11 ( )( )

( ) ( )
N N

k k k
C EC E

u u Au
τ ατ α

τ −
−

′′
− +                     (19) 

1 1

( )
(1 ) .

C E
M f

τ α

τα α− −

′
≤ −  

 

Proof. By Theorem 3, 

 

{ }
1

2

1
( )

( )

N

k C E
C E

D u M f
τ α

τ α

τ
τ ′

′

≤                              (20) 

 

for the solution of initial value problem (4). The proof of estimate 

{ }1 1 1
1

1 ( )( )
( ) (1 )

N

k k C EC E
u u M f

τ α
τ α

ττ α α− − −
− ′′

− ≤ −              (21) 

 

for the solution of initial value problem (4) is based on estimate (20) and the 

following estimates (Ashyralyev and Sobolevskii (1994)):  
 

1 1 1

1
1

( )
max (1 ) ,

k
k s

s
k N

s
C E

E

AR f M f
τ α

α

ττ α α− + − −

≤ ≤
=

′
′

≤ −∑               (22) 

 

{ }
1 1

2 21 1 1

1 11 ( )

max (1 ) .
Nk

k s

s k
k N

s E C E

AR D u M D u

α τ α

τ ττ α α− + − −

≤ ≤
= ′ ′

≤ −∑        (23) 

 

Using the triangle inequality, estimates (22), (23) and equation (4), we get 
 

{ } 1 1
11 ( )( )

(1 ) .
N

k C EC E
Au M f

τ ατ α

τα α− −

′′
≤ −                   (24) 

 
Estimate (19) follows from estimates (21) and (24). Theorem 5 is proved. 

 

Note that by passing to the limit for 0τ →  one can recover Theorems 1 and 2. 
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3. APPLICATIONS 

Now, we consider the applications of Theorem 3, 4 and 5. 

 

First, the initial-value problem on the range {0 1, R }nt x≤ ≤ ∈  for the 2m-

order multi-dimensional fractional parabolic equation is considered: 

1

2

1

2 1

1

( , ) ( , )
( , ) ( ) ( , ) ( , ),

0 1; (0, ) 0, R , ,

n

r

t r rr
r m n

n

n

t x t x
D t x a x t x f t x

t x x

t x x r r r

υ υ
υ συ

υ

=

∂ ∂
+ + + = ∂ ∂ ∂


< < = ∈ = + +

∑
⋯

⋯

     (25) 

 

where ( )ra x  and ( , )f t x  are given as sufficiently smooth functions. Here, 

σ  is a sufficiently large positive constant. 

 

The discretization of problem (25) is carried out in two steps. In the 

first step, the grid space 0R (0 )n
h h h< ≤  is defined as the set of all 

points of the Euclidean space R
n

 whose coordinates are given by 
 

, 0, 1, 2, , 1, , .k k kx s h s k n= = ± ± =⋯ ⋯  

 

The difference operator x x
h h hA B Iσ= +  is assigned to the differential 

operator ,x xA B Iσ= +  defined by (25). The operator 

 
2 1 21 22

1 1

2

,n ns ss sx m x
h s n n

m s

B h b
s

−−
− + − +

≤ ≤

= ∆ ∆ ∆ ∆∑ ⋯                      (26) 

 

acts on functions defined on the entire space R .n
h  Here, 

2R ns ∈  is a vector 

with nonnegative integer coordinates, 

 

( ) ( ( ) ( )),h h h
k kf x f x e h f x±∆ = ± ± −  

 

where ke  is the unit vector of the axis .kx   

 

An infinitely differentiable function ( )xϕ  of the continuous argument 

Rnx∈  that is continuous and bounded together with all its 

derivatives is said to be smooth.  
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We say that the difference operator x
hA  is a λ-th order (λ > 0) 

approximation of the differential operator 
x

A  if the inequality 
 

sup ( ) ( ) ( )x x
h

nx Rh

A x A x M hλϕ ϕ ϕ
∈

− ≤  

holds for any smooth function ( ).xϕ The coefficients x
sb  are chosen in 

such a way that the operator x
hA  pproximates in a specified way the 

operator .xA  It is assumed that the operator x
hA  approximates the 

differential operator 
x

A  with any prescribed order (Smirnitskii and 
Sobolevskii (1981)). 

 

The function ( , )xA h hξ  is obtained by replacing the operator k ±∆  in 

the right-hand side of equality (26) with the expression 

(exp{ } 1),ki hξ± ± − respectively and is called the symbol of the difference 

operator .x
hB  

 

We shall assume that for k hξ π≤  and fixed x  the symbol ( , )xA h hξ   

of the operator x x
h h hB A Iσ= −   satisfies the inequalities 

 

2

0( 1) ( , ) , arg ( , ) .
2

mm x xA h h M A h h
π

ξ ξ ξ φ φ− ≥ ≤ < ≤            (27) 

 

Suppose that the coefficient x
sb  of the operator x x

h h hB A Iσ= −  is bounded 

and satisfies the inequalities 

 

, R , (0,1].kx e h x c n
s s hb b Mh x

+ − ≤ ∈ ∈ε                           (28) 

 

With the help of ,x
hA  we arrive at the initial value problem 

1

2
( , )

( , ) ( , ) ( , ), 0 1, ,

(0, ) 0,

h x h h n

t h h

h n

h

t x
D t x A t x f t x t x

t

x x

υ
υ υ

υ

∂
+ + = < < ∈

∂
 = ∈

ℝ

ℝ

     (29) 

 
for an infinite system of ordinary differential equations. 
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In the second step, problem (29) is replaced by the difference scheme 
 

1

21

0

( ) ( )
( ),

( ) ( , ), , 1 , 1, ,

( ) 0, .

h h
h x h hk k
k h k k

h h n
k k k h

h n

h

u x u x
D u A u f x

f x f t x t k k N N x

u x

τ
τ

τ τ

−
 −

+ + =


= = ≤ ≤ = ∈


= ∈


ℝ

ℝ

           (30) 

 

Based on the number of corollaries of the abstract theorems given in 

the above, to formulate the result, one needs to introduce the spaces 

( )n
h hC C R=  and ( )n

h hC C Rβ β=  of all bounded grid functions ( )hu x  

defined on ,n
hR  equipped with the norms 

R R , R

( ) ( )
sup ( ) , sup ( ) sup .

n n nh h
h h h

h h

h h h h

x x x y
C C

u x u x y
u u x u u x

y
β β

ε ε ∈

− +
= = +  

 

Theorem 6. Suppose that assumptions (27) and (28) for the operator x
hA  

hold. Then, the solutions of the difference scheme (30) satisfy the 

following stability estimates: 
 

1

2

1
1 1
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The proof of Theorem 5 is based on the abstract Theorems 3, 4 and 5, 

the strongly positivity of the operator x
hA  defined by (33) in 

hC µ (Smirnitskii and Sobolevskii (1981)) and  the estimate 
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h h

x
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and on the following two theorems on the coercivity inequality for 

the solution of the elliptic difference equation in hC β  and on the 

structure of the fractional space ( , ).x
h hE C Aα′  

 
Theorem 7 (Ashyralyev and Sobolevskii (1994)). Suppose that 

assumptions (27) and (28) for the operator x
hA  hold. 

 

Then, for the solution of the elliptic difference equation 

 

( ) ( ), Rx h h n
h hA u x x xω= ∈                                  (31) 

the estimate 

2 1 21 22
1 1

2

( , )n n

hh

s ss sm h h
n n

m s
CC

h u M
s

ββ
σ β ω−−

− + − +

≤ ≤

∆ ∆ ∆ ∆ ≤∑ ⋯  

is valid. 

 
Theorem 8 (Ashyralyev and Sobolevskii (1994)). Suppose that 

assumptions (27) and (28) for the operator x
hA  hold.  

Then, for any 
1

0
2m

α< <  the norms in the spaces ( , )x
h hE C Aα′   and 

2m
hC α  are equivalent uniformly in .h  

 

Second, we consider the mixed boundary value problem for the 
fractional parabolic equation 
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2

2

2
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            (32) 

 
 

where ( , )a t x  and ( , )f t x  are given sufficiently smooth functions and 

( , ) 0.a t x a≥ >  Here, σ  is a sufficiently large positive constant. 
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The discretization of problem (32) is carried out in two steps. In the first 
step, let us define the grid space 

 

[0,1] { : , 0 , 1}.h rx x rh r K Kh= = ≤ ≤ =  

 

We introduce the Banach space ([0,1] )(0 1)h hC Cβ β β= < <  of the grid 

functions 1
1( ) { }h K

rxϕ ϕ −=  defined on [0,1] ,h  equipped with the norm 

 

1 1
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hh

k r kh h

k k KC Cβ β
τ

ϕ ϕ
ϕ ϕ

τ

+

≤ < + ≤ −

−
= +  

 

where ([0,1] )h hC C=  is the space of the grid functions defined on [0,1] ,h  

equipped with the norm 

 

1 1
max .

h

h
k

k KC
ϕ ϕ

≤ ≤ −
=  

 
To the differential operator A  generated by the problem (32), we assign the 

difference operator x
hA  by the formula 

 

{ }
1

, 1
( ) ( ( ) ) ,

Kx h

h x r rx
A x a xϕ ϕ δϕ

−
= − +                         (33) 

 

acting in the space of grid functions 0( ) { }h K
rxϕ ϕ=  satisfying the conditions 

0 1 0 1, .K K Kϕ ϕ ϕ ϕ ϕ ϕ −= − = −  With the help of ,x
hA  we arrive at the initial value 

problem 
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for an infinite system of ordinary fractional differential equations. In the second 

step, we replace problem (34) by difference scheme (4) 
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1

2 11
1

0
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τ
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   (35) 

 

Theorem 9.  Let τ  and h  be sufficiently small numbers. Then, the 

solutions of the difference scheme (35) satisfy the following stability estimates 
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The proof of Theorem 9 is based on the abstract Theorems 3, 4 and 5, the 

strongly positivity of the operator x
hA  defined by (33) in hC µ  and the estimate 
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min ln ,1 ln ( ) ln

h h
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µ
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and on the following theorem on the structure of the fractional space 

( , ).x
h hE C Aα′   

Theorem 10 (Ashyralyev (2007). For any 
1

0 ,
2

α< <  the norms in the 

spaces ( , )x
h hE C Aα′  and 2

hC α  
are equivalent uniformly in .h  

 

 

REFERENCES

Ashyralyev, A. 2010. Well-posedness of the Basset problem in spaces of 

smooth functions. Applied Mathematics Letters, 6 pages. 

 
Ashyralyev, A. 2009. A note on fractional derivatives and fractional 

powers of operators. Journal of Mathematical Analysis and 

Applications. 357(1): 232-236. 



Allaberen Ashyralyev 

 

88 Malaysian Journal of Mathematical Sciences 
 

Ashyralyev, A., Dal, F. and Pinar, Z. 2009. On the numerical solution 
of fractional hyperbolic partial differential equations, 

Mathematical Problems in Engineering, Article ID 730465, 

2009: 11 pages. 
 

Ashyralyev, A. 2007. Fractional spaces generated by the positivite 

differential and difference operator in a Banach space. In: Kenan 

Tas et al.(ed) Proc. of the Conf. Mathematical Methods and 

Engineering. Springer, Netherlands, 13-22. 

 

Ashyralyev, A. and Sobolevskii, P. E. 2004. New Difference Schemes 

for Partial Differential Equations, Operator Theory: Advances 

and Applications. Basel, Boston, Berlin: Birkh¨auser Verlag. 

 

Ashyralyev, A. and Sobolevskii, P.E. 1994. Well-Posedness of Parabolic 

Difference Equations, Operator Theory: Advances and 

Applications. Basel, Boston, Berlin: Birkhauser Verlag. 

 
Bagley, R. L. and Torvik, P. J. 1984. On the appearance of the fractional 

derivative in the behavior of real materials. J. Appl. Mech. 51: 

294-298. 
 

Basset, A.B. 1910. On the descent of a sphere in a viscous liquid. Quart. 

J. Math. 42: 369-381. 

 
El-Mesiry, E.M., El-Sayed, A. M. A. and El-Saka, H. A. A. 2005. 

Numerical methods for multi-term fractional (arbitrary) orders 

differential equations. Appl. Math. Comput.160(3): 683-699. 
 

Lavoie, J. L., Osler, T. J. and Tremblay, R. 1976. Fractional 

derivatives and special functions. SIAM Review. 18(2): 240-268. 
 

Mainardi, F. 1997. Fractional calculus: Some basic problems in 

continuum and statistical mechanics. In: A. Carpinteri and F. 

Mainardi, Ed., Fractals and Fractional Calculus in Continuum 
Mechanics, Springer-Verlag, New York: 291-348. 

 

Podlubny, I. 1999. Fractional Differential Equations. New York: 
Academic Press. 

 

 

 



Well-Posedness of Parabolic Differential and Difference Equations with the Fractional 

Differential Operator 

 

 Malaysian Journal of Mathematical Sciences 89 

 

Samko, S. G., Kilbas, A. A. and Marichev, O. I. 1993. Fractional Integrals 

and Derivatives. London: Gordon and Breach Science 
Publishers. 

 

Shaher Momani and Kamel Al-Khaled. 2005. Numerical solutions for 

systems of fractional differential equations by the decomposition 
method. Applied Mathematics and Computation. 162(3): 1351-

1365. 

 
Smirnitskii, Yu. A. and Sobolevskii, P. E. 1981. Positivity of 

multidimensional difference operators in the C—norm. Usp. Mat. 

Nauk. 36(4): 202-203. (Russian). 
 

Sobolevskii, P. E. 1971. The coercive solvability of difference 

equations. Dokl. Acad. Nauk SSSR. 201(5):1063-1066. 

(Russian). 
 

Tarasov, V. E. 2007. Fractional derivative as fractional power of 

derivative. International Journal of Mathematics. 18: 281-299. 
 

 

 
 

 

 

 
 


